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A B S T R A C T

Simultaneous detection of multiple targets with different analyte-recognition reactions in the same sample in a
rapid, low-cost and reliable way has immense potential with widespread applications in food safety, medical
diagnostics and environmental monitoring. Herein, we developed a lateral flow aptamer assay (LFAA) integrated
smartphone-based portable device for highly sensitive and precise detection of multiple targets, using aptamers
functionalized multi-colored upconversion nanoparticles as probes. The developed LFAA can provide rapid and
sensitive analysis of three different kinds of targets (i.e., small molecules, ions and bacteria) without significant
cross-reaction by using separate color channels. By using the competitive format, the concentration of each
target can be determined from the color intensity of the corresponding colored band. With the LFAA, we have
achieved detection ranges of 10–104 ppb, 0.01–50 μg/mL and 150–2000 CFU/mL and detection limits of 5 ppb,
3 ng/mL and 85 CFU/mL for mercury ions, ochratoxin A and Salmonella (as template analytes), respectively. The
LFAA was further used for detection in real water samples (i.e., tap water) within 30min. Subsequently, a
smartphone-based device was used instead of a CCD camera to read the results, which could make the detection
process rapid and portable. Therefore, the developed LFAA holds great potential as a sensitive, specific, con-
venient and stable platform for point-of-care detection of multiple targets in various fields.

1. Introduction

Multiple target testing (i.e., the simultaneous detection of different
types of targets in a single specimen) has recently gained significantly
increased attention in the areas of environmental monitoring, medical
diagnostics and food safety. For instance, pathogens, heavy metal ions
and other toxic substances are all important indicators for water quality
evaluation [1–3]. Also, clinical doctors often need to assess the content
of bacteria, fungal specimens or toxins in blood samples simultaneously
to precisely diagnose whether a symptom is caused by inflammation,
fungal infection or toxin accumulation [4]. In addition, a worldwide

public health issue, foodborne disease, is caused by different types of
contaminants (e.g., bacteria, antibiotics, illegal additives and pesticide
residues) in food samples, which impacts almost 1 in 10 of the global
population [5,6]. Therefore, it is of great importance to simultaneously
detect of multiple targets in the same sample in a rapid, reliable and
low-cost way.

The biggest challenge with existing analytical methods is that they
are not sensitive, rapid, low-cost or capable of multiple targets detec-
tion at the same time. For example, polymerase chain reaction (PCR),
liquid and gas chromatography and mass spectroscopy are known as the
gold standard for analyzing samples and are capable of multiple target

https://doi.org/10.1016/j.snb.2018.08.074
Received 2 May 2018; Received in revised form 13 August 2018; Accepted 15 August 2018

⁎ Corresponding author at: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an
Jiaotong University, Xi’an 710049, PR China.

E-mail address: minlin@mail.xjtu.edu.cn (M. Lin).

Sensors & Actuators: B. Chemical 276 (2018) 48–56

Available online 17 August 2018
0925-4005/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09254005
https://www.elsevier.com/locate/snb
https://doi.org/10.1016/j.snb.2018.08.074
https://doi.org/10.1016/j.snb.2018.08.074
mailto:minlin@mail.xjtu.edu.cn
https://doi.org/10.1016/j.snb.2018.08.074
http://crossmark.crossref.org/dialog/?doi=10.1016/j.snb.2018.08.074&domain=pdf


detection with high sensitivity and selectivity. However, these methods
are expensive, time-consuming and require well-trained operators [7].
Paper-based lateral flow assays (LFAs) show great potential for point-of-
care testing (POCT) due to their short turnaround time, sensitivity,
specificity, robustness and cost-effectiveness [8]. However, lateral flow
immunoassays (LFIAs), for example, are often developed for detection
of a single target per assay [9,10]. Thus, several LFIA formats have been
developed to address the challenge of detecting more than one analyte
in a single strip, which lends to further opportunity to increase speed
and decrease cost by screening multiple targets simultaneously
[11–14]. However, these LFAs are associated with limitation of non-
specific binding and crossover reactions, which can lead to false posi-
tive results [15]. Moreover, the inability to detect multiple targets
based on different analyte-recognition reactions (e.g., antibody-antigen
reaction, complementary base pairing and dry chemical reaction) has
greatly hindered its practical applications, since the recognition of
multiple targets (e.g., metal ions, food additives and pesticide residues)
often require different analyte-recognition reactions. For instance,
target capture based on antibody-antigen reaction is greatly compro-
mised by the difficulty to raise antibodies for toxicants or non-im-
munogens (e.g., metal ions, food additives and pesticide residues). Thus,
it remains a big challenge to design LFAs capable of detecting multiple
targets with different analyte-recognition reactions.

Aptamers, single-stranded DNA or RNA, are considered “chemical
antibodies” due to their sequence-specific, target-binding functionality,
which provides them a high affinity to form higher-order structures
[16]. More importantly, the conformational diversity of aptamers
makes them capable of recognizing a wider range of targets, such as
amino acids, metal ions, polysaccharides, protein complexes, virus
particles, bacteria and even whole cells, through hydrogen bonding,
electrostatic interactions, shape effect, aromatic rings, and/or base
pairing [17–21]. In addition, the synthetic feasibility of aptamers makes
them easy to modify and tag, providing extraordinary flexibility in the
development of POCT assays [21]. Thus, modified aptamers have been
tethered to colorimetric particles (e.g., gold nanoparticles) and then
employed in lateral flow aptamer assays (LFAAs). Various types of
LFAAs have been used to detect different targets, e.g., sandwich format
[22], competitive format [23], signal amplification for aptamer hy-
bridization-based LFIAs [24] and other formats of LFAAs [25]. How-
ever, these existing colorimetric-based LFAAs suffer from poor detec-
tion limits and mainly aim at single target detection.

The use of fluorescence nanoparticles can significantly improve the

detection limit (by one or two orders of magnitude), which satisfies
various detection applications [10,14]. Upconversion nanoparticles
(UCNPs) can convert near-infrared (NIR) excitation into visible emis-
sions, thus allowing great advances when used as signal reporters (e.g.,
avoiding background fluorescence, increasing photostability and im-
proving signal-to-noise ratio and sensitivity in complex biological
samples). However, LFAAs using UCNPs as fluorescence signal gen-
erators have not been reported yet.

In this study, we developed a novel LFAA for simultaneously de-
tecting multiple types of targets (i.e., bacteria, small molecules and
ions). To improve the detection sensitivity, UCNPs with red, green and
blue emission peaks were synthesized and used as detection probes
generating fluorescence signal. However, the generation of fluorescence
signal requires 980 nm laser irradiation and the fluorescence intensity
should be further related to the targets concentrations. We therefore
designed a portable reader to improve the usability of the assays, which
allows us to simultaneously detect and quantify multiple targets using
an LFAA and obtain the results via a smartphone. The conclusions can
be drawn from the presence and level of each target from the presence
and color intensity of a corresponding colored band. The developed
LFAA enables sensitive and specific detection of multiple targets using
different aptamers, which lends itself to potential applications in the
monitoring of quality and safety for various foodstuffs.

2. Materials and methods

2.1. Materials

1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride
(EDC), N-hydroxysulfosuccinimide sodium salt (sulfo-NHS), poly (ac-
rylic acid) (PAA, Mw=800–1000), ErCl3·6H2O, YCl3·6H2O,
TmCl3·6H2O, YbCl3·6H2O and NH4F were all purchased from Sigma
Aldrich. 1-Octadecene (90%) sodium and oleic acid (90%) were ob-
tained from Alfa Aesar. NaOH, methanol, chloroform, ethanol, saline-
sodium citrate (SSC), Tris-HCl, Tween 20 and bovine serum albumin
(BSA) were obtained from Tianjin Zhiyuan Chemical Reagent Co., Ltd.
Aptamers and their complementary sequences (Table 1) were selected
according to literature [26–28] and synthesized by Shanghai General
Biological Science & Technology Company.

Table 1
The sequences of the aptamer and the complementary DNA.

Sample Name Sequence (5–3′) Source

Aptamer 1 (OTA) GCTGAGTCTGAGTCG ATCGGGTGTGGGTGGCGTAAAGGGAGCATCGGACA Cruz-Aguado, J. A and Penner, G
[26]

complementary DNA 1 CGCCACCCACACCCGAT
Aptamer 2 (SE) GCTGAGTCTGAGTCG TATGGCGGCGTCACCCGACGGGGACTTGACATTATGACAG Xiaoyuan Ma et.al

[27]
complementary DNA 2 CTGTCATAATGTCAAG
Aptamer 3 (Hg2+) GCTGAGTCTGAGTCG TCATGTTTGTTTGTTGGCCCCCCTTCTTTCTTA Qing Li et.al

[28]
complementary DNA 3 AAACAAACATGA
complementary DNA of control part CGACTCAGACTCAGC

Table 2
The dosage of rare-earth chlorides.

UCNPs Dosage of rare-earth chlorides

NaYF4:Yb,Er (Green) YCl3 ·6H2O (242.69 mg, 0.8mmol), ErCl3 ·6H2O (7.64mg, 0.02mmol) and YbCl3 ·6H2O (69.75mg, 0.18mmol)
NaYF4:Yb,Tm (Blue) YCl3·6H2O (210.8 mg, 0.695mmol), YbCl3·6H2O (116.2 mg, 0.30mmol), and TmCl3·6H2O (1.9 mg, 0.005mmol).
NaYF4: Er,Tm (Red) YCl3·6H2O (267.0 mg, 0.88mmol), TmCl3·6H2O (7.7 mg, 0.02mmol), ErCl3 ·6H2O (38.2 mg, 0.1mmol)
Enhanced NaYF4: Er,Tm (Red) YCl3·6H2O (267.0 mg, 0.88mmol)
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2.2. Synthesis and surface modification of UCNPs

UCNPs were synthesized according to the protocol from the litera-
ture [29]. For three types of UCNPs, rare-earth chlorides were mixed
with a different molar ratio as shown in Table 2. The mixture was
dissolved in water (2 mL) and then added to a flask containing 1-oc-
tadecene (30mL) and oleic acid (12mL). The oxygen was removed
from the obtained mixture for 5min. The mixture was then heated to
160 °C under the protection of argon atmosphere and keeping for 1 h to
remove water. And then the solution was cooled down to room tem-
perature. Then, NH4F (148.15mg, 4mmol) and NaOH (100mg,
2.5 mmol) were dissolved in 10mL of a methanol and added into the
flask. The mixture was then kept stirring for 2 h at room temperature.
Next, the mixture was heated to 296 °C after methanol evaporation, and
then maintained for 1.5 h before cooling down. The product was then
centrifuged and washed with cyclohexane and ethanol for two times,
respectively, and was finally stored in cyclohexane (10mL).

Core-shell UCNPs with enhanced fluorescence intensity were syn-
thesized following the protocol from the literature [4]. For formation of
the shell, YCl3·6H2O (267.0mg, 0.88mmol) was added to a flask con-
taining 1-octadecene (15mL) and oleic acid (7.5 mL). The detailed
process was the same as mentioned in the synthesis process of the core
UCNPs. It is noteworthy that the core UCNPs (5mL) with red emission
should be added and then the mixture should be heated to 100 °C to
remove cyclohexane.

The surface modification of UCNPs was achieved by a ligand ex-
change process [30]. PAA, as a multidentate ligand, was used to dis-
place the original hydrophobic ligands on the UCNPs surface by mixing
PAA (15.8mg), UCNPs (1mL), ethanol (2 mL) in chloroform (1mL).
The mixture was dispersed and stirring overnight. Then, the product

was centrifuged and washed with ethanol for two times. Then the ob-
tained product was re-dispersed in PBS (5mL).

2.3. Attachment of aptamers to the UCNPs

UCNP-aptamer conjugates were prepared using the condensation
reaction [17]. As-prepared UCNPs-PAA (500 μL) was centrifuged at
8000 rpm for 8min and re-suspended in 500 μL of MES buffer (50mM,
pH=6.1). EDC (2mg/mL, 120 μL) and sulfo-NHS (2mg/mL, 60 μL)
were subsequently added into the mixture and kept standing for 2 h.
The aptamer solution (2 nmol/mL, 400 μL) was added into the mixture
and then overnight incubated. Then the aptamer conjugated UCNPs
were centrifuged and washed for two times with Tris-HCl buffer and
then finally re-dispersed in Tris-HCl buffer (500 μL). The red NaYF4: Er,
Tm nanoparticles (rUCNP) with aptamer 1 (for Hg2+) is called R-probe
hereinafter. And the green NaYF4: Yb,Er (gUCNP) with aptamer 2 (for
ochratoxin A) and blue NaYF4: Yb,Tm (bUCNP) with aptamer 3 (for
Salmonella) are called G-probe and B-probe, respectively.

2.4. Preparation of LFAA

The lateral flow aptamer assay was prepared following the protocol
from the literature [31]. An absorbent pad (2.5×30 cm), a ni-
trocellulose membrane (NC membrane, 2.0× 30 cm) and an immersing
pad (1.9× 30 cm) were pasted on a backing pad (6.0× 30 cm) with
2mm overlap between every two adjacent pads. Then the as-prepared
pads were cut into strips with a width of 2.5mm using Matrix 2360™

Programmable Shear. Control and test zones were separately generated
by dispensing capture and control probe (100 μM, 0.3 μL).

Streptavidin was used as an intermediate to immobilize control and

Fig. 1. Schematic illustration of LFAA for simultaneous multiple targets detection.
(A) The structure of the developed LFAA. The three kinds of ssDNA sequences were attached to three kinds of UCNPs (red, green and blue) by a condensation
reaction, respectively. Streptavidin was used as an intermediate to react with both biotin and the NC membrane to immobilize complementary DNA of aptamer parts
and control parts on an NC membrane. We mixed probes in buffer solution, this solution was further mixed with sample solution and was finally detect by the design
strip. (B) In the absence of target, UCNP probes were separately hybridized with the corresponding complementary DNA. (C) In the presence of targets (i.e., bacteria,
small molecules and metal ions), the aptamers preferentially bonded to the corresponding targets and caused fewer aptamers hybridized with complementary DNA,
thereby liberating UCNPs and resulting in fluorescence decrease. The color intensities of the corresponding test zones gradually decrease as the concentrations of the
analytes in the samples increase. (D) A smartphone-based portable device is using to read the detection results. (E) The schematic of the smartphone-based portable
device. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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capture probes on the NC membrane due to that it can react with both
biotin and the NC membrane. Briefly, complementary DNA of aptamers
and control probes were previously biotinylated. For the control zone,
control probe (6.27 nmol) was added into 62.7 μL of streptavidin (1mg/
mL). For the test zone, 34.2 μL, 28.8 μL, 66.7 μL of streptavidin (1mg/
mL) were added into bacteria, molecule and ions capture probe, re-
spectively (dry powder, 3.42 nmol, 2.88 nmol, 6.67 nmol). The ob-
tained probes were incubated at 25 °C for 40min. The final con-
centration of each probe was 100 μM. Finally, the control and capture
probes (0.3 μL) were added onto the NC membrane and dried in an oven
at 37 °C for 2 h.

2.5. Sample preparation

For bacteria targets, bacteria strains used in this research were
Salmonella (ATCC 50761), E. coli (ATCC 8739), Staphylococcus aureus
(ATCC 25923) and Bacillus subtilis (ATCC 6633). Salmonella (SE) was
selected as analyte for bacteria detection while other bacteria were
selected as control groups. For a small molecule, ochratoxin A (OTA)
was selected as a target while Aflatoxin B1, kanamycin and melamine
were selected as control groups. For ion target, mercury ion was se-
lected as target for ion detection while lead ion, cupric ion and ferrous
ion were selected as control groups.

2.6. Detection of targets

Running buffer was prepared by adding SSC (2×), Tween 20 (0.5%
v/v), BSA (4% w/v) into Tris-HCl (10mM, pH 7.4) buffer. Then three
UCNPs probes were added into running buffer as a ratio of R-probe: G-
probe: B-probe: running buffer= 2 μL:0.2 μL:1.2 μL:20 μL.
Subsequently, the as-prepared probe (20 μL) was pipetted separately
into sample solution (60 μL). Immobilizing probes in immersion pad
requires a large number of optimization processes (e.g. concentration
and composition of buffer, concentration of probe, drying time)
[32,33]. We therefore mixed probes in buffer solution rather than im-
mobilizing probes in the immersion pad, which could make the ex-
periment process more convenient and stabile. The LFAAs were sub-
merged into the mixture for 30min and then removed. We used the
980 nm laser to hit the assay at a 45-° position to excite the test zone.
The camera (Nikon D90) was fixed to a tripod to upright against the
assay and the exposure time was set to 4 s to obtain the strongest signal
while avoiding overexposure. The quantitative detection of fluores-
cence intensities was performed by image processing with ImageJ to
quantify the fluorescence intensities. We repeated 5 groups of detec-
tions to obtain the average values and standard deviation and evaluated
the detection limit of the developed LFAA for each target. The quanti-
tative results were also performed using a smartphone and a handhold
device developed by our lab (see Fig. S7A for details).

Fig. 2. Characterization of UCNPs.
TEM images of (A) NaYF4: Er,Tm, (B) NaYF4:Yb,Er and (C) NaYF4: Yb,Tm. The size distribution of (D) NaYF4: Er,Tm, (E) NaYF4:Yb,Er and (F) NaYF4:Yb,Tm.
Fluorescence emission spectrum of (G) NaYF4: Er,Tm, (H) NaYF4:Yb,Er and (I) NaYF4: Yb,Tm. Insets of (G–I) show photographs of the solution of NaYF4: Er,Tm,
NaYF4:Yb,Er and NaYF4: Yb,Tm excited by a 980 nm laser, respectively.
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3. Results and discussion

3.1. Design of the LFAA for multiple targets detection

The principles of the multiplex detection of bacteria, small mole-
cules and metal ions using multicolor LFAA are schematically described
in Fig. 1. Three kinds of amino-modified ssDNA sequences (Table 1) are
attached to the three carboxyl-functionalized UCNPs with different
emission colors, respectively, through a condensation reaction. Strep-
tavidin is used as an intermediary to react with both biotin and the NC
membrane. It will immobilize the complementary DNA of the aptamer
and the control parts on the NC membrane. The operation of the de-
veloped LFAA is based on the competition between targets in the
samples and the complementary DNA of the aptamer conjugates, which
are immobilized on the NC membrane for binding to the multicolor
UCNPs-labeled aptamers. Hence, the fluorescence intensity of the cor-
responding test zones gradually decreases as the concentration of the
targets in the samples increases. The detection results could be read
using a smartphone and a portable device (Fig. 1D). The schematic of
the developed device is shown in Fig. 1E.

3.2. Characterization of UCNPs

Sensitive and stable target detection requires UCNPs to have good
surface characteristics and high fluorescence intensity. A series of
characterizations were conducted to assess the morphology, size and
surface characteristics of the UCNPs. NaYF4 was chosen as the host
material for the UCNPs due to its high chemical stability and low
phonon energies (∼350 cm−1). Various rare-earth chlorides were
doped on the NaYF4 to make three kinds of UCNPs with different
emission peaks. The dosages are shown in Table 2. XRD patterns show
all the diffraction peaks can be ascribed to the hexagonal structure of
NaYF4 (JCPDS no. 16-0334), which indicate that NaYF4 exhibits a pure
hexagonal phase (Fig. S1). We also checked the morphology of three
kinds of UCNPs using transmission electron microscopy (TEM) and
observed that rUCNPs, gUCNPs and bUCNPs all have hexagonal

structures (Fig. 2A–C). From the elemental analysis, we observed that
rUCNPs, gUCNPs and bUCNPs have an average diameter of 38 nm,
45 nm and 54 nm and the molarity of r-UCNPs, g-UCNPs and b-UCNPs
are 39 nM, 24 nM and 14 nM, respectively (Fig. 2D–F, see Supporting
Information for the calculation details). The successful modification of
PAA on the UCNPs was confirmed by FT-IR spectroscopy (Fig. S2A),
which can be further confirmed by the clear polymer layer observed on
the surface of UCNPs from the HRTEM image (Fig. S2B). After re-dis-
persing the obtained UCNPs-PAA in ultrapure water and under 980-nm
excitation, we observed red, green and blue emissions at peaks of
650 nm, 540 nm and 450 nm from rUCNPs, gUCNPs and bUCNPs, re-
spectively (Fig. 2G–I). We also observed that, compared to gUCNPs and
bUCNPs, rUCNPs show a weaker emission intensity, which may affect
the reading of fluorescence intensity from different colors when using
multiple target detection. This may because of the much larger 980 nm
absorption of Yb3+ (2F7/2→2F5/2) than that of Er3+ (4I11/2→4I15/2)
[32]. Therefore, core-shell structured rUCNPs (NaYF4@NaYF4:Er,Tm)
with a concentration of 39 nM were used instead to enhance red
fluorescence (Fig. S3).

We prepared the three conjugates, i.e., core-shell rUCNPs-aptamer 1
(for Hg2+), gUCNPs-aptamer 2 (for OTA) and bUCNPs-aptamer 3 (for
SE), to detect the three different targets. The carboxyl groups on the
surface of PAA-UCNPs were activated using sulfo-NHS and EDC, and
the activated carboxyl groups were then reacted with the amine groups
on the aptamers. The successful connection of aptamers and UCNPs was
confirmed using UV–vis absorption spectroscopy. No absorption peak
was observed via UV–vis spectroscopy in the UCNPs-PAA before con-
jugating with aptamers. However, an absorption peak at approximately
260 nm of the aptamer was detected after the conjugation reaction.
(Fig. S4).

3.3. Optimization of the multiple target LFAA

The operation of the multiple target LFAA is based on the compe-
tition between targets in the sample and the complementary DNA of
aptamers conjugated on the surface of the working membrane for

Fig. 3. Detection of a single target using the developed LFAA. (For interpretation of the references to colour in the text, the reader is referred to the web version of
this article.)
The fluorescence images show the grey level decreases (A) with the increasing Hg2+concentration, (B) with increasing OTA concentration, (C) with the increasing SE
concentration. Standard curves of the relative grey level of (D) red channel versus Hg2+ concentration, (E) green channel versus OTA concentration and (F) blue
channel versus Salmonella concentration show linear relationship. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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binding to the UCNP-aptamer probes. Hence, the fluorescence intensity
of the corresponding test zones gradually decreases as the analyte
concentration increases.

The optimal composition (e.g., running buffer and concentration of
BSA, SSC and UCNP probes) of the detection system should provide the
minimum detection limit as well as precise and quantitative detection
of the targets. Through optimization, we obtained the final running
buffer which contains Tris-HCl (10mm, pH 7.4), tween 20 (0.5% v/v),
BSA (4% v/w) and 2× SSC. In addition, probe concentration can affect
sensitivity and signal intensity. Probe concentrations (0.2 μL for G-
probes (4.8 nM), 1.2 μL for B-probes (2.8 nM) and 2 μL for R-probes
(8 nM)) were optimized to ensure both signal intensity and sensitivity.
The detailed optimized process is shown in Figs. S5–S6.

3.4. Evaluation of the detection limit and specificity

We prepared single-target LFAAs using R-probes, G-probes and B-
probes, and repeated 5 groups of experiment to evaluate the detection
limit of the developed LFAA for different targets. (e.g., OTA, Hg2+ and
SE) (Fig. 3). We observed that the grey level of the test zone gradually
decreases as the corresponding target concentration increases by ex-
amining the detected gradient concentration of the targets (Fig. 3A–C).
To quantitative analysis the results, we use ImageJ to select the test
zone and estimate the average grey level. The selection of test zone was
shown as Fig S7A, a circle tool was used to framing the test zone along
the border. The target concentrations are proportional to the decrease
in the grey level of test zone, implying a linear relationship in the de-
tection range of 10–104 ppb for Hg2+, 0.01–50 μg/mL for OTA and
150–2000 CFU/mL for SE (Fig. 3D–F). Statistical analysis reveals that
the detection limit reaches 5 ppb, 3 ng/mL and 85 CFU/mL for Hg2+,
OTA and SE, respectively, which were calculated by the ratio of three
times of the standard deviation of the blank signals. Target detection
can be completed within 30min using the developed LFAA without the
need for enrichment using the developed LFAA, which is significantly
faster than the traditional methods, such as PCR [33], ELISA [34],
colony culture and counting [35] and the electrochemical method [36].
In addition, the auto-fluorescence of some targets (e.g., bacteria and
biotoxin) can be avoided because UCNPs are excited by 980 nm NIR
radiation. The detection sensitivity can be significantly improved as
compared with gold nanoparticles or traditional fluorescence materials.
For instance, the detection limit for OTA is 10 ng/mL [37], and for
Salmonella is 104 CFU/mL [38] both using gold nanoparticle based
lateral flow assay. The lateral flow assay using quantum dots for
foodborne pathogen can improve the detection limit to 3000 CFU/mL
[39], which highlights its potential use for sensitive POCT.

We added other targets (e.g., E. coli, Bacillus subtilis, Staphylococcus
aureus, Aflatoxin B1, kanamycin, melamine, lead ions, cupric ions and
ferrous ions) into the sample to test the specificity of the developed
LFAA (Fig. 4). In the example shown in Fig. 4A, we analyzed the grey
level of the test zone by adding all the targets to the above R-probe and
observed that only Hg2+ induced a dramatic fluorescence decrease at
the corresponding grey level channel. We further quantified the grey
level for different targets and found that Pb2+, Cu2+, Fe2+ and other
molecules and bacteria in this system had negligible effects on the test
zone. These results demonstrate that the R-probe exhibits good speci-
ficity. In the same way, we also prove that these control targets have no
significant effect on the G-probe and B-probe (Fig. 4B–C).

3.5. Integration for multiple targets detection

After proving the sensitivity and specificity of the developed single-
target LFAA was satisfactory, we proceeded to assess our LFAA for
multiple target testing. To this end, we integrated three test zones into
one assay and added analytes to prove that the developed LFAA could
detect three targets simultaneously. It’s noteworthy that we proved that
the LFAA was working. Therefore, in the case of multiple detection, we
removed the control zone. As shown in Fig. 5A, three test zones (red,
green and blue) can be observed in the absence of three analytes
(control experiment) and the corresponding test zone eventually dis-
appears upon adding each analyte. We compared the detection results
from multiple targets and single-target detection. And the result in
Fig. 5B shows that there is no significant difference between the two,
indicating that the developed LFAA is capable of multiple targets de-
tection. It is known that the potential disadvantages of multiplexing
include non-specific binding and crossover reaction, leading to false
positive results. An increase in the number of analytes may cause ser-
ious crossover reaction. This difficulty in distinguishing between si-
multaneously detected analytes can be overcome by using multicolor
signals on a single test strip [14]. The advantages of using multicolor
probes over single-color probe modified with different aptamers lie in:

Fig. 4. Specificity evaluation of the developed LFAA.
Change in grey level with various types of targets (A) using R-probe, (B) using
G-probe and (C) using B-probe. (Concentration was 103 CFU/mL, 10 μg/mL and
103 ppb for each bacteria, molecules and ions, respectively.)
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The crossover reaction could be obviously observed by using of multi-
color probes, in which case single-color probe is not working; (ii) We
measured the results by splitting color area to RGB channels, which are
exactly correspond to the colors of three UCNPs probes. Thus by using
multicolor probes, we can still analyze the results when crossover re-
action occurred (Fig. S7B). Thus, the developed LFAA addresses the
issue of crossover reaction from different analytes as involved in the
traditional methods. On the other hand, unlike traditional multiplex
LFAs, which can only detect the same type of target, the developed
LFAA is able to detect different kinds of targets owning to the use of
aptamers.

The accuracy and practical application of the developed LFAA was
evaluated using tap water as a real sample because the targets here-
inbefore may all appear in water. The samples were spiked with OTA,
Hg2+ and SE at different concentrations without pretreatment. The
entire detection process was completed in about 30min, and the results
are shown in Fig. 6. We observed that the analyzed results using tap
water were generally less than results in the running buffer, which is
probably because the concentration of BSA, SSC were lower in the
system. However, the analyzed trend still maintains a good linear re-
lationship. Thus, we can still obtain accurate results using a correction
factor. The performance in this application clearly demonstrates that
the developed LFAA can efficiently detect and quantify multiple targets
in real samples.

To further demonstrate the application of our LFAA for POCT, we
read the results using a smartphone-based reader developed by our lab
to make the detection process more portable (Fig. S8A) [4]. As shown in
Fig. S8B, the grey level of the results from our developed platform is
lower than the results from the CCD camera. This may be because the
exposure of the smartphone is not as good as the CCD camera. However,
the results still maintain a good linear relationship. This result indicates
that the developed LFAA can be used in resource-limited settings via
such smartphone-based reader. In addition, the manufacturing cost can
be greatly reduced due to the application of the paper-based structure
and aptamer. Unlike traditional detection methods that require large
devices and expensive supplies to meet detection requirements (e.g.,
sensitive, specific, multiple targets), our developed LFAA is able to
sensitively and rapidly detect multiple targets with a portable device
and low-cost supplies.

4. Conclusions

In this study, we developed a lateral flow aptamer assay integrated
smartphone-based portable device to achieve specific and sensitive
detection of multiple targets with different analyte-recognition reac-
tions (e.g., ochratoxin A, mercury ions and Salmonella) simultaneously.
The detection limits for mercury ions, ochratoxin A and Salmonella are
5 ppb, 3 ng/mL and 85 CFU/mL, respectively. The use of upconversion
nanoparticles with different emission bands as the core of the detection
probes avoids the problem of crossover reactions from different ana-
lytes enabling an efficient method for multiple target detection. We also
demonstrate that the aptamer-based recognition method provides un-
precedented advantages for the detection of multiple targets with dif-
ferent analyte-recognition reactions in a single lateral flow strip. The
detection platform was tested successfully in the detection of ochra-
toxin A, mercury ions and Salmonella in real water samples (i.e., tap
water) within 30min. Therefore, the developed detection platform of-
fers a novel approach for sensitive, specific, convenient detections,
which holds enormous potential for detecting a wide range of targets in
water and food samples.
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three-dimensional microenvironment using electrochemical scanning probe microscopy
techniques and developing paper-based point-of-care platforms.
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