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Abstract: The segmentation and classification of retinal arterioles and venules play an 
important role in the diagnosis of various eye diseases and systemic diseases. The major 
challenges include complicated vessel structure, inhomogeneous illumination, and large 
background variation across subjects. In this study, we employ a fully convolutional network 
to simultaneously segment arterioles and venules directly from the retinal image, rather than 
using a vessel segmentation-arteriovenous classification strategy as reported in most 
literature. To simultaneously segment retinal arterioles and venules, we configured the fully 
convolutional network to allow true color image as input and multiple labels as output. A 
domain-specific loss function was designed to improve the overall performance. The 
proposed method was assessed extensively on public data sets and compared with the state-
of-the-art methods in literature. The sensitivity and specificity of overall vessel segmentation 
on DRIVE is 0.944 and 0.955 with a misclassification rate of 10.3% and 9.6% for arteriole 
and venule, respectively. The proposed method outperformed the state-of-the-art methods and 
avoided possible error-propagation as in the segmentation-classification strategy. The 
proposed method was further validated on a new database consisting of retinal images of 
different qualities and diseases. The proposed method holds great potential for the diagnostics 
and screening of various eye diseases and systemic diseases. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Retinal arterioles and venules, defined as small blood vessels directly before and after the 
capillaries, are the only human microcirculation that can be non-invasively observed in vivo 
with an optical method. Various eye diseases and systemic diseases manifest themselves on 
the fundus image as retinal arteriole and venule changes [1, 2]. Specifically, diseases may 
affect the arterioles and venules differently. For example, the narrowing of retinal arterioles 
and widening of retinal venules independently predict the risk of mortality and ischemic 
stroke [3]. Therefore, identifying and quantifying the changes of retinal arterioles and venules 
may serve as potential biomarkers for the diagnosis and long-term monitoring of these 
diseases. 

Manual segmentation is extremely labor-intensive and clinically not feasible. Thus, it is of 
great importance to automatically segment and analyze the arterioles and venules individually 
on the retinal images. The main challenges for automatic segmentation are three-fold. First, 
the vascular morphology varies greatly in an image because of an inherited inhomogeneous 
illumination partially caused by the image acquisition procedure (i.e., projecting a spherical 
surface onto a plane). Second, by projecting three-dimensional vascular trees to a two-
dimensional image, the vessel trees are overlapped with incomplete structures. At last, the 
retina shows diverse background pigmentation across images because of different biological 
characteristics (i.e., races and ages). 

In the past decades, various methods have been developed to classify the retinal vessels 
into arteriole and venule, which can be categorized as tree-based methods and pixel 
classification methods. The tree-based methods target at dividing the retinal vessels into 
individual biological vessel trees often by a graph-theoretic method [4–7]. Rothaus et al. 
reported a rule-based method that propagates vessel labels through a pre-segmented vascular 
graph, in which the labels need to be manually initialized [4]. Hu et al. proposed a graph-
based, meta-heuristic algorithm to separate vessel trees [5]. Dashtbozorg et al. proposed to 
classify the vessel trees by deciding the type of each crossing point and assigning arteriole or 
venule label to each vessel segment [6]. A more recent work by Estrada et al. also used a 
graph-theoretic framework incorporated with a likelihood model [7]. Tree-based methods 
usually require manual seeds for initialization. Furthermore, a single mislabel along the 
propagation may lead to mislabel of the entire vessel tree. On the other hand, the pixel 
classification methods extract hand-crafted local features around pixels with known true 
labels and build classifiers or likelihood models for test images [8–13]. The local features are 
usually designed based on observable colorimetric and geometric differences between 
arterioles and venules. For example, arterioles contain oxygenated hemoglobin that shows 
higher reflectance than deoxygenated hemoglobin in specific wavelengths and are thus 
brighter than venules. The central light reflex (CLR) phenomenon is another widely used 
feature, which is more frequently seen in retinal arterioles than venules. Narasimha-Iyer et al. 
reported an automatic method to classify arterioles and venules in dual-wavelength retinal 
images with structural and functional features, including the CLR and oxygenation rate 
difference between arterioles and venules [8]. Saez et al. reported a clustering method and the 
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features are RGB/HSL color and gray levels [11]. Niemeijer et al. reported a supervised 
method and the designed features are HSV color features and Gaussian derivatives [9, 10]. 
Vazquez et al. proposed a retinex image enhancement method to adjust the uneven 
illumination inside a retinal image [12]. Our group also proposed an intra-image and inter-
image normalization method to reduce the sample differences in feature space [13]. Pixel 
classification methods often struggle at finding the most representative features. As discussed 
above, the retinal images have an inherited inhomogeneous illumination and have large 
variation across images. Though some efforts have been made to alleviate the problem [12, 
13], the improvement is limited because pixel classification methods show an inability to 
incorporate context information. At last, there are some common limitations for tree-based 
methods and pixel classification methods. First, a high-quality vessel segmentation is usually 
required as input, which is used for graph construction in tree-based methods and for reducing 
the three-class problem (e.g., arteriole, venule, and background) to a two-class problem (e.g., 
arteriole and venule) in pixel classification methods. However, vessel segmentation, by itself, 
is another challenging task in image analysis. In the reported arteriole and venule 
classification methods, the vessel segmentation is either from manual or semi-automatic 
methods [7, 14], which makes the algorithm pipeline time-consuming, or from other 
automatic algorithms [6, 10, 11], which makes an error propagation inevitable. At last, most 
of the methods reported in literatures are only trained and tested on limited data sets. The 
performance on data sets with large variations has not been reported yet. 

Convolutional neural networks (CNN) have been widely applied in image labeling and 
segmentation in recent years. Though initially developed for image labeling, various methods 
have been proposed for semantic segmentation in an image [15–17]. In the field of retinal 
image analysis, although several CNN methods have been reported for vessel segmentation 
[18, 19], to our best knowledge, this is the first application for simultaneous vessel 
segmentation and arteriovenous classification. In this study, we apply and extend a fully 
convolutional network (FCN) first proposed by Ronneberger et al. [20]. Specifically, the 
architecture is modified to allow true color image as input and multi-label segmentation as 
output. Second, a domain-specific loss function is designed, which can be used as a general 
strategy for imbalanced multi-class segmentation problem. The proposed method was 
compared extensively with literatures on available public data sets. To assess the robustness 
of our method between images with various qualities, we further assessed our method on a 
new database consisting of fundus images with diverse qualities and disease signs. 

2. Experimental materials 

The DRIVE (Digital Retinal Image for Vessel Extraction) database consists of 40 color 
fundus photographs from a diabetic retinopathy screening program [21]. Seven out of the 40 
images contain pathologies such as exudates, hemorrhages and pigment epithelium changes. 
The image size is 768 × 584 pixels (Canon CR5 non-mydriatic 3-CCD camera). The 20 
images from the test set was manually labeled by trained graders and thus is included in this 
study. Full annotation was given for this data set, meaning each pixel was given a label of 
arteriole (red), venule (blue), crossing (green), uncertain vessel (white), or background 
(black). This A/V annotated data set is also known as the RITE data set [5]. The INSPIRE 
data set contains 40 optic-disc centered color fundus images with a resolution of 2392 × 2048 
pixels [10]. Only selected vessel centerline pixels are labeled in this data set [6]. Arteriole 
centerlines, venule centerlines, and uncertain centerlines are labeled in red, blue, and white, 
respectively. 

The method is further assessed on a new database (REVEAL, REtinal arteriole &VEnule 
AnLysis), which includes three sets of images of different image quality and disease signs. 
Specifically, REVEAL1 includes ten images from ten participants with diabetes mellitus 
(Topcon TRC-NW6S retinal camera, FOV of 45°, image size 3872 × 2592 pixels). This data 
set contains early signs of diabetic retinopathy, such as microaneurysm and exudates. 
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first image from the DRIVE data set was selected for convenience. The R, G, B channels of 
all other images, including other images in the DRIVE data set, are matched respectively to 
the R, G, B channels of the target image, as shown in Fig. 3. 

3.2 Training the FCN architecture for retinal arteriole and venule classification 

The original FCN architecture can be recognized as two parts, the descending part and the 
ascending part, with a total number of 23 convolutional layers. However, in the original 
network, the feature map after each convolution loses its boundary pixels, resulting in 
different input and output image size. We apply same padding in convolution to avoid 
inconsistent image sizes. The activation function is rectified linear unit (ReLU). The details of 
the network can be found in Fig. 2. To maintain the same input and output image size, the 
size of the input image should be a multiple of 16. In our applications, the input images are 
resized to 576 × 576 pixels. 

 

Fig. 2. Flowchart of the proposed method. 

Data augmentation of 60 times is implemented by applying a combination of elastic 
deformation [23] and random flipping of the original image considering the limited number of 
training images. Hence, the final number of training image is 50 × 60 = 3,000 color fundus 
images. 

In a pilot study, we use the cross entropy of a pixel-wise soft-max loss between the 
predicted label and ground truth label over the final feature map as the energy function. This 
simple energy function result in 1) generally under-segmented fine vessels and 2) arterioles 
prone to be misclassified as venules. In this study, we apply a weighted cross entropy that 
penalizes each pixel with different labels with different weights, which is precomputed from 
each ground truth segmentation, as given in Eq. (1). 

 ( )( ) log( ( ))c l x
x

E w x p x
∈Ω

=   (1) 

where l(x) is the true label of each pixel, pk(x) is the softmax output of each pixel, and wc(x) is 
the weight of each pixel. In the design of wc, more importance is given to arteriole pixels and 
venule pixels. In our experiment, wc is 10 for arteriole pixels, 5 for venule pixels, and 1 for 
background pixels. 

3.3 Testing 

Before being input to the pipeline, the testing image is resized to 576 × 576 pixels. We 
noticed that slightly different information is provided when the images are oriented in 
different directions. To better capture the fine vessels, the original images are flipped in the x-
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4. Results 

4.1 Assessment on public data sets 

Visualization of original image, ground truth, and automatic segmentation results on the 
DRIVE data set are given in Fig. 4 as the first column, second column, and third column, 
respectively. The Se and Sp of vessel segmentation are assessed and compared with the state-
of-the-art methods in Table 1. The proposed method achieves significantly better Se of 0.944 
and comparable Sp of 0.955 compared with the state-of-the-art methods. The 
misclassification rate is 10.3% for arteriole and 9.6% for venule. 

Table 1. Comparison of different vessel segmentation algorithms on DRIVE 

Methods Year Se Sp Acc AUC 
Human - 0.776 0.972 - - 
Staal et al. [24] 2004 - - - 0.952 
Ricci et al. [25] 2007 - - 0.960 0.963 
Marin et al. [26] 2011 0.707 0.980 0.945 0.959 
Miri et al. [27] 2011 0.735 0.979 0.946  
Roychowdhury et al. [28] 2015 0.739 0.978 0.949 0.967 
Wang et al. [29] 2015 0.817 0.973 0.977 0.948 
Xu et al. [30] 2016 0.786 0.955 0.933 0.959 
Li et al. [19] 2016 0.757 0.982 0.953 0.974 
Zhang et al. [31] 2016 0.774 0.973 0.948 0.964 
Proposed Method 2017 0.944 0.955 0.954 0.987 

 
Visualization of the original image, ground truth, and automatic segmentation on the 

INSPIRE data set is given in Fig. 6. It should be noted that the original ground truth label 
only contains centerline pixels for selected vessel segments, which is dilated in Fig. 6 only for 
the sake of better visualization. It should also be noted that the proposed method was not 
trained on the INSPIRE data set, meaning INSPIRE is an outside test set. The overall Se is 
0.889 and the misclassification rate is 26.1% for arteriole and 15.4% for venule. 

After assessing the vessel segmentation result, the accuracy of arteriole and venule 
classification is compared with methods in literatures (Table 2). Our method achieved 
comparable results with the literatures. However, it should be noted that the arteriovenous 
classification methods reported in literature are usually developed and assessed on 
selected/known vessel segments or centerlines. Our method, on the other hand, is assessed on 
automatically detected vessel pixels with a ground truth label. 

Table 2. Comparison of different arteriole and venule classification algorithms on public 
data sets 

Methods Year Database Acc' Description 
Niemeijer et al. [9] 2009 DRIVE 0.88 (AUC) Method evaluated on known vessel 

centerlines 
Mirsharif et al. [32] 2011 DRIVE 86% Method evaluated on selected major vessels 

and main branches 
Dashtbozorg et al. [6] 2014 DRIVE 87.4% Method developed and evaluated on known 

vessel centerline locations 
Estrada et al. [7] 2015 DRIVE 93.5% Methods developed and evaluated on known 

vessel centerline locations 
Xu et al. [13] 2016 DRIVE 83.2% Method evaluated on all correctly detected 

vessels 
Proposed method 2017 DRIVE 90.0% Method evaluated on automatically 

detected vessels 
Dashtbozorg et al. [6] 2014 INSPIRE-AVR 88.3% Method developed and evaluated on known 

vessel centerline locations 
Estrada et al. [7] 2015 INSPIRE-AVR 90.9% Method developed and evaluated on known 

vessel centerline locations 
Proposed method 2017 INSPIRE-AVR79.2% Method evaluated on automatically 

detected vessels 
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type of vessel even for the human grader. The ROC of proposed method on DRIVE and 
REVEAL is given in Fig. 10. 

Table 3. Result on the REVEAL data sets 

 Vessel segmentation Arteriole/venule classification 
 Se Sp Acc MISCa MISCv Acc' 

REVEAL1 
G2 0.816 0.967 0.958 0.040 0.030 0.965 

Our method 0.941 0.953 0.952 0.077 0.061 0.931 
REVEAL2 Our method 0.902 0.948 0.944 0.115 0.069 0.908 
REVEAL3 Our method 0.792 0.978 0.973 0.299 0.113 0.794 

 

Fig. 10. The ROC of different methods and manual classification on REVEAL data sets. (a) 
ROC for arterioles segmentations. The AUC is 0.980 for DRIVE and 0.979, 0.969, and 0.926 
for the three REVEAL data sets. (b) ROC for venule segmentations. The AUC is 0.981 for 
DRIVE and 0.987, 0.975, 0.967 for the three REVEAL data sets. 

5. Discussion 

Applying fully convolutional networks in the segmentation of medical image is challenging 
because the targets are usually small or have diverse appearances. In this study, retinal blood 
vessels are fine structures with complicated tree patterns. The simultaneous segmentation of 
arterioles and venules is challenging as vessel boundary information comes from a finer scale 
but distinguishing arteriole from venule requires a coarser scale. In our approach, we take 
advantage of FCN architecture, in which high resolution features from the contracting path 
are combined with the subsampled features in the expanding path to increase the localization 
accuracy for fine structures. Another advantage of our method is that it directly classifies 
arterioles and venules from the original image without need for pre-segmentation of the blood 
vessels and thus avoids possible error propagation. On the other hand, algorithms reported in 
the literature that show better result usually require a high-quality vessel segmentation as 
input. 

We tested our method on public data set and more images of different conditions, such as 
severe DR and fundus images taken using a smartphone at POC settings (Fig. 9). This is of 
great importance as real clinical images are quite often imperfect with various disease signs 
and low image quality. To our knowledge, our method is the first method assessed on severe 
disease cases and on fundus images taken using a smartphone. We made this data set publicly 
available for the researchers to develop and evaluate their methods 
(http://bebc.xjtu.edu.cn/retina-reveal). 

To provide an overall view of the performance, the true background (GTbkg), true vein 
(GTv), and true artery (GTa) versus predicted background (Pbkg), predicted vein (Pv), and 
predicted artery (Pa) are shown in 3 × 3 matrices for the DRIVE and REVEAL data sets in 
Table 4. For the sake of better comparison, the starred number was normalized to 1 for each 
data set. For further discussion, the precision and recall of the vessel segmentation was also 
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calculated. Precision is defined as TP/(TP + FP) and recall is defined as TP/(TP + FN). The 
precisions for DRIVE and REVEAL data sets are 0.65, 0.55, 0.58, 0.53 while the recalls are 
0.94, 0.94, 0.90, and 0.79, respectively. We can see the precisions are relatively low 
comparing with the recalls. The reason is that, as discussed in Fig. 7, graders/automatic 
methods sometimes have different bias on general vessel width. Table 4 shows that the 
automatically detected vessels are slightly wider than the manually segmented vessels. Figure 
11 shows the color-coded result images, with each color defined as in Table 4. The 
disagreement on general vessel width can be solved by applying an accurate vessel boundary 
delineation method [33]. 

Table 4. The true background, vein, artery and predicted background, vein, artery for 
DRIVE and RVEAL 1, 2, 3. 

 DRIVE REVEAL 1 REVEAL 2 REVEAL 3 
 Pbkg Pv Pa Pbkg Pv Pa Pbkg Pv Pa Pbkg Pv Pa 

GTbkg 26.50 0.57 0.69 44.77 1.08 1.12 34.45 0.95 0.95 171.81 2.17 1.60 
GTv 0.07 1.12 0.12 0.08 1.52 0.09 0.14 1.40 0.10 0.58 2.59 0.31 
GTa 0.07 0.12 1.00† 0.09 0.08 1.00† 0.14 0.13 1.00† 0.58 0.41 1.00† 

 
The network can be trained in less than 70 minutes in cross validation and it takes about 

17 seconds to run a test image. The configuration of the computer is Intel CoreTM i7 6700k 
CPU and NVIDIA GeForce GTX 1080 GPU (8GB). The project was implemented in Python 
using Keras. 

 

Fig. 11. Sample color-coded result images for the DRIVE and REVEAL1 data sets. The 
corresponding colors are defined in Table 4. 

The FCN method has been widely studied and applied in medical image labeling and 
segmentation in the past few years [15, 16, 34, 35]. Though it generally yields better result, its 
limitation is also obvious. First, it needs large training data. This is particularly difficult for 
segmentation tasks as the manual creation of training image is extremely labor-intense. 
Second, the current architecture shows limited ability to incorporate prior or domain 
knowledge. In the arteriole and venule segmentation, for example, there are some important 
prior knowledges to improve the performance, including 1) the label within one vessel 
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segment should be consistent; 2) the daughter branches should have the same label as the 
mother branch; and 3) the arteriole/venule would not cross another arteriole/venule. How 
these knowledges can be incorporated in the pipeline should be studied in the future. 

Simultaneous arteriole and venous segmentation is the basis for other retinal image 
analysis towards computer-aided diagnosis, such as population-based screening of diabetic 
retinopathy and the measurement of arteriolar-to-venular ratio (AVR) [36, 37]. As discussed 
by Estrada et al., though the significance of AVR has long been appreciated in the research 
community, the measurement of AVR has been limited to the six largest first level arterioles 
and venules within a concentric grid (0.5-2.0 disc diameter) centered on the optic disc [7]. Yet 
the subtler and earlier changes in smaller arterioles and venules have not been studied yet. 
Another future work will focus on a computer-aided labeling of DR signs and on the study of 
the association between smaller vessels and systemic diseases. 

6. Conclusion 

In this paper, we proposed to simultaneously segment retinal arterioles and venules using an 
improved FCN architecture. This method allowed end-to-end multi-label segmentation of a 
color fundus image. We assessed our method extensively on publicly data sets and compared 
with the state-of-the-art methods. The result shows the proposed method outperforms the 
state-of-the-art methods in vessel segmentation and classification. This method is a potential 
tool for the computer-aided diagnosis of various eye diseases and systemic diseases. 
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