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a b s t r a c t 

(Background and objectives): Retinal artery and vein classification is an important task for the automatic 

computer-aided diagnosis of various eye diseases and systemic diseases. This paper presents an improved 

supervised artery and vein classification method in retinal image. 

(Methods): Intra-image regularization and inter-subject normalization is applied to reduce the differences 

in feature space. Novel features, including first-order and second-order texture features, are utilized to 

capture the discriminating characteristics of arteries and veins. 

(Results): The proposed method was tested on the DRIVE dataset and achieved an overall accuracy of 

0.923. 

(Conclusion): This retinal artery and vein classification algorithm serves as a potentially important tool 

for the early diagnosis of various diseases, including diabetic retinopathy and cardiovascular diseases. 

© 2017 Elsevier Ireland Ltd. All rights reserved. 
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. Introduction 

The retinal vasculature provides lots of information about vari-

us ophthalmic and systemic diseases, including diabetes mellitus

nd cardiovascular diseases. However, these diseases may affect ar-

eries and veins differentially [1] . For instance, retinal veins are ab-

ormally dilated in patients with diabetes mellitus and ipsilateral

evere extracranial carotid diseases, while arteries are narrowed

n high blood pressure [2,3] . Besides, these vascular changes often

recede the onset of other signs and symptoms associated with

hese diseases, which makes the analysis of retinal vessels attrac-

ive as a biomarker for the early diagnosis and treatment. There-

ore, it is of great interest to develop automated tools for retinal

rtery and vein classification. 

The retinal artery and vein classification methods reported in

iterature can be divided into tree-based methods and feature-

ased methods. The former focuses on segmenting retinal vessels

nto individual biological vessel trees, which can be further classi-

ed into artery trees and venous trees. Rothaus et al. reported a

emiautomatic approach using a rule-based method that can prop-

gate vessel labels through the vascular graph, in which the la-
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els were manually labeled by user as arteries or veins [4] . Hu

t al. proposed a graph-based, meta-heuristic algorithm to sepa-

ate vessel trees, which was evaluated on 48 fundus images with a

alse positive rate of 11.03% [5] . A recent work by Estrada et al. in-

orporated a graph-theoretic framework with a likelihood model,

hich needs iterative exploration of possible solutions to achieve

ptimized result. This method achieved a high accuracy of 91.78%

rom four different datasets [6] . Drawbacks of tree-based methods

nclude the requirement for manual initial labels in some of the

ethods and the risk that a single mislabel along propagation may

ead to mislabel of entire vessel tree, which is almost inevitable as

he vessel tree goes to peripheral regions where low contrast is

rovided. Besides, complicated graph-based method usually asks

or high computational cost and long running time. The second

trategy is feature-based methods, which take advantage of the

act that retinal arteries and veins in standard retinal fundus imag-

ng show a number of colorimetric and geometric differences [7] .

pecifically, arteries contain oxygenated hemoglobin, which has

igher reflectance than deoxygenated hemoglobin in specific wave-

engths, and are thus brighter than veins. Besides, the central light

eflex (CLR) phenomenon, a specular reflection, is more frequently

een in retinal arteries. Various methods have been developed for

etinal artery and vein classification based on a single or a com-

ination of these features. For instance, Niemeijer et al. reported a

upervised classification method using a k -nearest neighbor ( k NN)

http://dx.doi.org/10.1016/j.cmpb.2017.01.007
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Fig. 1. Examples of intra-image and inter-subject differences. From left to right: inset view of retinal blood vessels from central region to peripheral region of the same 

image. From top to bottom: inset view of retinal blood vessels from different subjects. 
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classifier, in which HSV color features and Gaussian derivatives

were used as discriminating features and an area under the re-

ceiver operator characteristic (ROC) curve of 0.88 was reported [8] .

Saez et al. reported an unsupervised method based on a cluster-

ing algorithm to distinguish arteries and veins using RGB/HSL color

and gray level as the discriminating features, which gave a sensi-

tivity of 0.78 for arteries and 0.87 for veins [9] . However, several

important characteristics of retinal images are neglected in these

methods. First, retinal image suffers from an inherited inhomo-

geneous brightness caused by uneven illumination during image

acquisition, resulting in very different appearances of blood ves-

sels near the center of the image and at peripheral regions, which

can be even larger than the differences between arteries and veins.

Moreover, the inter-subject background varies a lot due to biologi-

cal characteristics (as shown in Fig. 1 ), showing different distribu-

tions in feature space. To address these, Vazquez et al. proposed

a retinex image enhancement method to adjust the uneven illu-

mination inside an image, which improved the classification re-

sult to an accuracy rate around 90% [10] . Relan et al. reported

an unsupervised method based on a Gaussian mixture model and

an expectation-maximization clustering on illumination-corrected

retinal images, which gave an accuracy of 0.87 for veins and 0.85

for arteries [11] . Although improvement has been achieved in these

methods through considering intra-image differences, inter-subject

differences were not considered. Besides, relatively simple features,

such as different RGB and HSV color spaces, have been considered

as discriminating features in most reported methods. We propose

that more complicated features may be more efficient in distin-

guishing retinal arteries and veins. For example, the exact vessel

width can reflect the major geometric difference between arter-

ies and veins while the image texture is able to show not only

color features but also geometric features, including the sharpness

of vessel boundary and the coarseness inside a blood vessel [12] .

Thus, we introduce several novel features in this work trying to

improve the efficiency of classification. 

In this paper, we propose to improve the retinal artery and vein

classification in two ways. First of all, background adjustment is

applied to decrease the intra-image differences, i.e. , the differences
etween central region and peripheral regions. Moreover, an inter-

ubject normalization is introduced to minimize the color differ-

nces between subjects. Second, we introduce several novel fea-

ures, including the exact vessel width and the first and second

rder texture features. 

. Materials 

The vessel classification method was evaluated on a popular

ublicly available database, the DRIVE (Digital Retinal Image for

essel Extraction) database, which includes a set of forty color fun-

us photographs obtained from a diabetic retinopathy screening

rogram [13] . In this dataset, seven out of forty images contain

athologies such as exudates, hemorrhages and pigment epithe-

ium changes. The images, with a size of 768 × 584 pixels, were

cquired using a Canon CR5 non-mydriatic 3-CCD camera with a

eld-of-view (FOV) of 45 °. DRIVE database is divided into two sets,

he training set and the test set, each containing twenty images.

he test set, manually segmented by two observers and the first

bserver is accepted as ground truth, was included in this study.

he vessels from the test set was manually labeled as artery, vein,

r overlapping by a trained ophthalmologist. 

. Methods 

The flowchart of our approach is given in Fig. 2 . Initially, the

ntra-image regularization and inter-subject normalization is ap-

lied and the blood vessels are extracted based on image salient

eatures. During training phase, multiple image features are ex-

racted from each vessel centerline pixel and a likelihood model

s established. During test phase, the same features are extracted

or each centerline pixel and classified using a kNN classifier. For

ach test pixel, the output value of the classifier is the average of

he labels of the k nearest neighbors in feature space, resulting in

 gray-scale probability image. In this image, lower gray level in-

icates a higher probability of being a vein while higher gray level

ndicates a higher probability of being an artery. At last, a voting
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Fig. 2. Flowchart of proposed algorithm. 
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rocedure is applied to achieve a consistent classification for each

essel segment. 

.1. Preprocessing 

Fundus image suffers from inhomogeneous background color

ue to uneven illumination on the curved surface of retina dur-

ng imaging. Hence, before the inter-subject normalization, a back-

round regularization is performed by applying a high-pass filter

n the image. To do this, a Gaussian filter with large kernel is con-

olved with the original image ( Fig. 3 a) to remove the high fre-

uency information, leaving only the slowly changing background,

hich is then subtracted from the original image ( Eq. 1 ). 

 (x, y ) = I(x, y ) − ϕ(x, y ) ∗ I(x, y ) , (1)

(x, y ) = 

1 √ 

2 πσ 2 
e −

x 2 + y 2 
2 σ2 , (2)
ig. 3. Preprocessing of retinal images. (a) Original retinal image. (b) After intra-image ba

ion result. 
here ϕ denotes a Gaussian filter with a σ of 5, I(x,y) denotes the

riginal image, and R(x,y) denotes the background-removed resid-

al image ( Fig. 3 b). After the intra-image background regulariza-

ion, an inter-subject normalization is performed to reduce the dif-

erence between images obtained from different subjects. This is

specially important in supervised classification methods as it can

educe the differences between training and test data. To perform

he normalization, the histograms of the red, green, and blue chan-

els are calculated and the median values are found individually.

hen a brightness curve transform is performed in each channel to

ove the median value to a unified center ( Eq. 3 ). 

(x, y ) = max ( min (I(x, y ) − median (H) + c, 255) , 0) (3)

here H denotes the histogram of image I(x,y), c denotes the uni-

ed center (128 in this study), and g denotes the image after

rightness curve transform ( Fig. 3 c). 

The retinal vessel is extracted from the retinal image using a

aliency-based vessel segmentation method. Various salient fea-

ures, including spectral residual, Gabor-based orientation feature,

orphological feature, and self-information, are extracted. The fi-

al binary blood vessel image is created by a linear combination

f all normalized saliency features ( Fig. 3 d). Detailed method de-

cription and validation can be found in Xu et al. [14] . This method

ave an accuracy of 93.3% for the DRIVE database in the validation

tudy. Vessel skeleton is generated from the binary vessel image

hrough sequential thinning, followed by the removal of branching

nd crossing points, leaving individual vessel segments for feature

xtraction. 

.2. Feature extraction 

For each vessel centerline pixel, the normal direction is calcu-

ated. Three adjacent centerline pixels from both sides are included

n a principle component analysis. The second principal component

orresponds to the normal direction of the target centerline pixel.

or an end point without enough neighboring centerline pixels, the

ormal direction follows the nearest valid centerline pixel, i.e. , a

enterline pixel with a normal direction. Two types of data are

sed for feature calculation, namely single profile and image patch

 Fig. 4 ). Single profile p(x) is a one-dimensional function sampled
ckground regularization. (c) After inter-subject normalization. (d) Vessel segmenta- 
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Fig. 4. Illustration of the two types of data used in feature calculation. (a) Single profile p(x) is a one-dimensional function sampled along the normal direction of the target 

centerline, used in the extraction of vessel width and central light reflex (CLR) features. (b) Image patch is a two-dimensional image sampled along the normal direction of 

the target centerline and its adjacent neighboring centerlines, covering a neighboring region for feature extraction. 

Table 1 

The complete set of features extracted for artery and vein classification. 

Category Name Description Index 

Profile Vessel Width The precise width of a vessel profile in pixel. 1 

CLR Std The standard deviation of a vessel profile, characterizing the central light reflex property. 2 

CLR Skewness The skewness of a vessel profile, characterizing the central light reflex property. 3 

CLR Kurtosis The kurtosis of a vessel profile, characterizing the central light reflex property. 4 

Color CIExyY x The average x value of a vessel segment in CIExyY color space. 5 

CIExyY y The average y value of a vessel segment in CIExyY color space. 6 

CIExyY Y The average Y value of a vessel segment in CIExyY color space. 7 

Texture-FOS Mean The mean of the first order statistic texture features of a vessel segment. 8 

Std The standard deviation of the first order statistic texture feature of a vessel segment. 9 

Skewness The skewness of the first order statistic texture feature of a vessel segment. 10 

Kurtosis The kurtosis of the first order statistic texture feature of a vessel segment. 11 

Texture-GLCM Energy The energy of the GLCM texture feature of a vessel segment. Degrees 0 and 90 were used. 12–13 

Entropy The entropy of the GLCM texture feature of a vessel segment. Degrees 0 and 90 were used. 14–15 

Contrast The contrast of the GLCM texture feature of a vessel segment. Degrees 0 and 90 were used. 16–17 

Homogeneity The homogeneity of the GLCM texture feature of a vessel segment. Degrees 0 and 90 were used. 18–19 

Correlation The correlation of the GLCM texture feature of a vessel segment. Degrees 0 and 90 were used. 20–21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

The definitions of first order and second order texture features. 

Category Name Definition 

First order statistics Mean μ = 

N ∑ 

i =1 

x i p i 

Standard deviation σ = 

√ 

1 
N 

N ∑ 

i =1 

( x i − μ) 
2 

Skewness γ1 = 

E[ (X−μ) 
3 

] 

(E[ (X−μ) 
2 

]) 
3 / 2 

Kurtosis γ2 = 

E[ (X−μ) 
4 

] 

(E[ (X−μ) 
2 

]) 
2 

GLCM Image Texture Energy Energy = 

N−1 ∑ 

i, j=0 

( P i j ) 
2 

Entropy Entropy = 

N−1 ∑ 

i, j=0 

− ln ( P i j ) P i j 

Contrast Contrast = 

N−1 ∑ 

i, j=0 

P i j (i − j) 
2 

Homogeneity Homogeneity = 

N−1 ∑ 

i, j=0 

P i j 

1+ (i − j) 
2 

Correlation Correlation = 

N−1 ∑ 

i, j=0 

P i j 
(i −μ)( j−μ) 

σ 2 

P ij : Element i, j of the normalized symmetrical GLCM. 

N : Number of gray levels in the image. 
along the normal direction of the target centerline, used in the ex-

traction of vessel width and CLR features. Image patch is a two-

dimensional matrix sampled along the normal direction of the tar-

get centerline and its adjacent neighboring centerlines, covering a

neighboring region for feature extraction. The size of the image

patch was empirically set to cover the width of the widest vessel

in the image (8 pixels × 8 pixels for the DRIVE dataset). All fea-

tures are normalized to [0, 1] and a list of all 21 features is given

in Table 1 . 

(1) Single profile features: the first set of features is extracted

from the single cross-sectional profile p(x) , including ves-

sel width and CLR features. The precise vessel width of

a single cross-sectional profile is calculated using graph-

based method [15] . This method is able to find the left

and right boundaries simultaneously by modeling the two-

boundary problem into a single three-dimensional optimal

surface problem, after which the vessel width is calculated

as the distance between the left and right boundaries. As

mentioned above, CLR is more frequently seen in arteries.

We use the standard deviation, skewness, and kurtosis to

characterize the shape of the single profile ( Table 2 ). 

(2) Color features: The color features are extracted from an im-

age patch centered at the target centerline pixel. The CIExyY
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Table 3 

Results on individual images from the DRIVE test dataset. 

Index TPR A TPR V Acc 

1 0 .931 0 .920 0 .926 

2 0 .857 0 .969 0 .920 

3 0 .908 0 .968 0 .944 

4 0 .999 0 .863 0 .936 

5 0 .916 0 .938 0 .927 

6 0 .945 0 .982 0 .965 

7 0 .970 0 .968 0 .969 

8 0 .914 0 .941 0 .930 

9 0 .966 0 .967 0 .967 

10 0 .930 0 .954 0 .943 

11 0 .889 0 .945 0 .918 

12 0 .874 0 .948 0 .918 

13 0 .957 0 .936 0 .945 

14 0 .880 0 .946 0 .916 

15 0 .968 0 .837 0 .915 

16 0 .868 0 .959 0 .917 

17 0 .809 0 .802 0 .805 

18 0 .994 0 .961 0 .977 

19 0 .884 0 .853 0 .866 

20 0 .804 0 .901 0 .861 

Overall 0 .915 0 .929 0 .923 

p  

i  

T  

w  

T  

t  

fi  

m  

u

 

a  

∼  

a

5

 

a  

t  

n  

i  

(  

i  

d  

t  

f  

c  

w  

i

 

o  

r  

n  

p  

t  

t  

n  

f  

o  

b  

t  

i  
color space is used to characterize the color properties of the

vessel, in which the chromaticity of a color was specified by

two parameters x and y and the brightness is specified by a

third parameter Y. The average values of x, y, and Y within

the image patch are used. 

(3) Texture features: Both first-order statistics (FOS) and second-

order statistics such as gray-level co-occurrence matrix

(GLCM) are analyzed for the image patch centered at the

target centerline pixel. FOS texture features are related to

the gray level distribution ( i.e. , histogram) of an image path

and ignore inter-pixel correlations. In contrast, second-order

statistics consider the spatial relationship of pixels in an im-

age patch, making it angle dependent. GLCM is a common

second-order texture analysis, which describes the texture of

an image by giving the frequency of the pairs of pixels that

are with specific values and in a specific spatial relationship.

Both degree 0 and degree 90 are calculated in this study.

Specific parameters extracted from GLCM analysis include

energy, entropy, contrast, homogeneity, and correlation. The

details of texture feature calculation is given in Table 2 . Tex-

ture features are extracted from the green channel of the

image, which usually shows the best contrast [16] . 

.3. Training phase 

A supervised classification method is used, in which a classi-

er is established during the training phase and then used to clas-

ify unknown test images in the future. For each training image,

he vessel is first segmented and the vessel centerline pixels are

enerated through a sequential thinning method. Then the vessel

ranching points and crossing points are removed, resulting in in-

ividual vessel segments. For each vessel centerline pixel, all fea-

ures mentioned above are extracted. A leave-one-out cross valida-

ion method is used because of the small sample size. 

.4. Test phase 

During the test phase, for each previously unseen image, the

ame preprocessing is applied, including intra-image regulariza-

ion, inter-subject normalization, and vessel centerline extraction.

imilarly, branching points and crossing points are excluded from

urther analysis. For each vessel centerline pixel, the same set of

eatures is extracted as input to a k NN classifier with a Euclidean

istance metric. Initially, three classifiers, including kNN, neuron

etwork, and decision tree, were compared using Weka 3 [17] . The

NN classifier outperformed the other two classifiers and was se-

ected in this study. The output is a soft label ranging from 0 to 1,

n which a higher soft label indicates a higher probability of being

rteries and vice versa for veins. After obtaining the classification

esult for each vessel centerline, a voting procedure is taken inside

ach vessel and the majority voting is determined as the final clas-

ification for the whole vessel segment. 

. Results 

To evaluate the result of our method, the true positive rate for

rteries and veins were calculated respectively. For each detected

essel centerline pixel, a truth label is obtained from the manually

lassified ground truth image with 0 denotes vein and 1 denotes

rtery. The vessel centerline pixels without a truth label will be

iscarded. TPR A is defined as the ratio of correctly classified artery

enterline pixels to all centerline pixels with a label ‘artery’ . Sim-

larly, TPR V is defined as the ratio of correctly classified vein cen-

erline pixels to all centerline pixels with a label ‘vein’ . Finally,

cc is defined as the ratio of all correctly detected centerline pix-

ls to all centerline pixels with a ground truth label. All centerline
ixels with a true label in the truth image are included, resulting

n a total number of 73,003 for finally classified centerline pixels.

he accuracy is 0.915 for arteries and 0.929 for veins, respectively,

hile the overall accuracy is 0.923. Table 3 summarizes the TPR A ,

PR V , and Acc for all images in the DRIVE test set. Fig. 5 shows

hree sample results from the DRIVE dataset. For each sample, the

rst column is the original fundus image, the second column is the

anual classification of all vessels by an expert, and the last col-

mn shows the final classification with proposed method. 

The proposed method was implemented in C ++ and tested on

 3.40 GHz Intel® Core TM i7-3770 CPU with 8GB of RAM. It took

40 seconds to build the likelihood model and ∼5 seconds to run

 test image from the DRIVE dataset. 

. Discussion and conclusion 

In this work, we showed an improved supervised retinal artery

nd vein classification method. Retinal artery and vein classifica-

ion is a challenging task because of the inhomogeneous bright-

ess caused by uneven illumination and because of the substantial

nter-subject background variation such as pigmentation patterns

 Fig. 1 ). We hypothesized that by implementing intra-image and

nter-subject normalization, the inhomogeneity in features as in-

uced by color differences could be reduced and that more sophis-

icated features such as image texture would lead to improved per-

ormance distinguishing arteries from veins. Our hypothesis was

onfirmed by an accuracy of 0.915 for artery and 0.929 for vein,

hich outperformed previous pixel-based methods without intra-

mage and inter-subject normalization [8,9] . 

There are several limitations of our proposed method. Firstly,

ur approach was developed and tested on a small set of high-

esolution retinal images and its performance on low quality reti-

al images has not yet been assessed. The method can be im-

roved by including nonmydriatic, low quality retinal images ob-

ained at point-of-care settings in the training set. A second limi-

ation is that the proposed pixel-based classification method can-

ot guarantee the connectivity of the vessel tree, which is a use-

ul prior for further image analysis, such as for the calculation

f arteriolar-to-venular ratio and branching angle [10,18–20] . Tree-

ased methods show great advantage in this aspect [21] . Our fu-

ure work will focus on the establishment of continuous topolog-

cal trees based on the achieved artery and vein classification, in
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Fig. 5. Sample classification results. (a) Original fundus images. (b) Truth images from human expert. (c) Automatic classification results. 
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2010 . 
which the proposed method can provide prior information for the

establishment of continuous topological trees [22] . 

Many properties of retinal arteries and veins have been shown

to change after the development and during the course of vari-

ous ocular and systemic diseases, such as diabetic retinopathy and

cardiovascular diseases [23–26] . The establishment of an automatic

artery and vein classification method, combined with vessel width

measurement [15,27] , helps to understand the clinical significance

of retinal vascular changes in a more efficient way. Another po-

tential usage of the proposed automatic artery and vein classifica-

tion method is in the establishment of a computer-aided diagnos-

tic/screening tool for resource-limited settings, where professional

personnel are not always available [28] . 

In summary, we proposed an improved method for retinal

artery and vein classification by applying intra-image and inter-

subject normalizations. Novel features such as first order and sec-

ond order image texture were implemented to improve the effi-

ciency of classification. This method showed an overall accuracy

of 0.923 and high computational performance of ∼5 seconds per

image. This method holds great potential for computer-aided diag-

nosis of various diseases. 
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